

Cache Machine

Cache Machine provides automatic caching and invalidation for Django models
through the ORM. The code is hosted on
github [http://github.com/django-cache-machine/django-cache-machine].

For an overview of new features and backwards-incompatible changes which may
affect you, please see the Release Notes.

Settings

Older versions of Cache Machine required you to use customized cache backends. These are no longer
needed and they have been removed from Cache Machine. Use the standard Django cache backends.

COUNT queries

Calls to QuerySet.count() can be cached, but they cannot be reliably
invalidated. Cache Machine would have to do a full select to figure out the
object keys, which is probably much more data than you want to pull. I
recommend a short cache timeout; long enough to avoid repetitive queries, but
short enough that stale counts won’t be a big deal.

CACHE_COUNT_TIMEOUT = 60 # seconds, not too long.

By default, calls to QuerySet.count() are not cached. They are only cached
if CACHE_COUNT_TIMEOUT is set to a value other than
caching.base.NO_CACHE.

Empty querysets

By default cache machine will not cache empty querysets. To cache them:

CACHE_EMPTY_QUERYSETS = True

Object creation

By default Cache Machine does not invalidate queries when a new object is
created, because it can be expensive to maintain a flush list of all the
queries associated with a given table and cause significant disruption on
high-volume sites when all the queries for a particular model are
invalidated at once. If these are not issues for your site and immediate
inclusion of created objects in previously cached queries is desired, you
can enable this feature as follows:

CACHE_INVALIDATE_ON_CREATE = 'whole-model'

Cache Manager

To enable caching for a model, add the CachingManager to
that class and inherit from the CachingMixin. If you
want related lookups (foreign keys) to hit the cache, CachingManager must
be the default manager. If you have multiple managers that should be cached,
return a CachingQuerySet from the other manager’s
get_queryset method instead of subclassing CachingManager, since that
would hook up the post_save and post_delete signals multiple times.

Here’s what a minimal cached model looks like:

from django.db import models

from caching.base import CachingManager, CachingMixin

class Zomg(CachingMixin, models.Model):
 val = models.IntegerField()

 objects = CachingManager()

 # if you use Django 2.0 or later, you must set base_manager_name
 class Meta:
 base_manager_name = 'objects' # Attribute name of CachingManager(), above

Whenever you run a query, CachingQuerySet will try to find that query in
the cache. Queries are keyed by {prefix}:{sql}. If it’s there, we return
the cached result set and everyone is happy. If the query isn’t in the cache,
the normal codepath to run a database query is executed. As the objects in the
result set are iterated over, they are added to a list that will get cached
once iteration is done.

Note

Nothing will be cached if the QuerySet is not iterated through completely.

Caching is supported for normal QuerySets and
for django.db.models.Manager.raw(). At this time, caching has not been
implemented for QuerySet.values or QuerySet.values_list.

To support easy cache invalidation, we use “flush lists” to mark the cached
queries an object belongs to. That way, all queries where an object was found
will be invalidated when that object changes. Flush lists map an object key to
a list of query keys.

When an object is saved or deleted, all query keys in its flush list will be
deleted. In addition, the flush lists of its foreign key relations will be
cleared. To avoid stale foreign key relations, any cached objects will be
flushed when the object their foreign key points to is invalidated.

During cache invalidation, we explicitly set a None value instead of just
deleting so we don’t have any race condtions where:

	Thread 1 -> Cache miss, get object from DB

	Thread 2 -> Object saved, deleted from cache

	Thread 1 -> Store (stale) object fetched from DB in cache

The foundations of this module were derived from Mike Malone’s [http://immike.net/]
django-caching [http://github.com/mmalone/django-caching/].

Changing the timeout of a CachingQuerySet instance

By default, the timeout for a CachingQuerySet instance will be the timeout
of the underlying cache being used by Cache Machine. To change the timeout of
a CachingQuerySet instance, you can assign a different value to the
timeout attribute which represents the number of seconds to cache for

For example:

def get_objects(name):
 qs = CachedClass.objects.filter(name=name)
 qs.timeout = 5 # seconds
 return qs

To disable caching for a particular CachingQuerySet instance, set the
timeout attribute to caching.base.NO_CACHE.

Manual Caching

Some things can be cached better outside of the ORM, so Cache Machine provides
the function caching.base.cached() for caching arbitrary objects. Using
this function gives you more control over what gets cached, and for how long,
while abstracting a few repetitive elements.

Template Caching

Cache Machine includes a Jinja2 extension to cache template fragments based on
a queryset or cache-aware object. These fragments will get invalidated on
using the same rules as CachingQuerySets.

First, add it to your template environment:

env = jinja2.Environment(extensions=['caching.ext.cache'])

Now wrap all your queryset looping with the cache tag.

{% cache objects %} {# objects is a CachingQuerySet #}
 {% for obj in objects %}
 ...
 {% endfor %}
{% endcache %}

…and for caching by single objects:

{% cache object %}
 ...expensive processing...
{% endcache %}

The tag can take an optional timeout.

{% cache objects, 500 %}

If someone wants to write a template tag for Django templates, I’d love to add
it.

Redis Support

Cache Machine support storing flush lists in Redis rather than memcached, which
is more efficient because Redis can manipulate the lists on the server side
rather than having to tranfer the entire list back and forth for each
modification.

To enable Redis support for Cache Machine, add the following to your settings
file, replacing localhost with the hostname of your Redis server:

CACHE_MACHINE_USE_REDIS = True
REDIS_BACKEND = 'redis://localhost:6379'

Note

When using Redis, memcached is still used for caching model objects, i.e.,
only the flush lists are stored in Redis. You still need to configure
CACHES the way you would normally for Cache Machine.

Classes That May Interest You

	
class caching.base.CachingQuerySet

	Overrides the default QuerySet to fetch objects
from cache before hitting the database.

Index

 C

C

 	
 	caching.base.CachingQuerySet (built-in class)

Release Notes

v1.1.0 (2019-02-17)

	Drop official support for unsupported Django versions (1.8, 1.9, and 1.10)

	Add support for Django 2.0, 2.1, and 2.2 (thanks, @JungleKim and @wetneb!)

	Add support for Python 3.7

	Fix Travis

v1.0.0 (2017-10-13)

	Update Travis and Tox configurations

	Drop support for Python < 2.7

	Add support for Python 3.5 and 3.6

	Drop support for Django < 1.8

	Add support for Django 1.9, 1.10, and 1.11

	Removed all custom cache backends.

	Flake8 fixes

Backwards Incompatible Changes

	Cache Machine previously included custom backends for LocMem, Memcached and PyLibMemcached. These
were necessary because the core backends in old versions of Django did not support infinte
timeouts. They now do, so Cache Machine’s custom backends are no longer necessary. They have been
removed, so you should revert to using the core Django backends.

v0.9.1 (2015-10-22)

	Fix bug that prevented objects retrieved via cache machine from being
re-cached by application code (see PR #103)

	Fix bug that prevented caching objects forever when using Django <= 1.5
(see PR #104)

	Fix regression (introduced in 0.8) that broke invalidation when an object
was cached via a slave database and later modified or deleted via the
master database, when using master/slave replication (see PR #105). Note
this change may cause unexpected invalidation when sharding across DBs
that share both a schema and primary key values or other attributes.

v0.9 (2015-07-29)

	Support for Python 3

	A new setting, CACHE_INVALIDATE_ON_CREATE, which facilitates invalidation
when a new model object is created. For more information, see
Object creation.

v0.8.1 (2015-07-03)

This release is primarily aimed at adding support for more recent versions of
Django and catching up on recent contributions.

	Support for Django 1.7 and Django 1.8

	Fix bug in parsing of REDIS_BACKEND URI

	Miscellaneous bug fixes and documentation corrections

	Dropped support for the old style caching.backends.memcached.CacheClass and
caching.backends.locmem.CacheClass classes. Support for this naming
has been deprecated since Django 1.3. You will need to switch your project
to use MemcachedCache, PyLibMCCache, or LocMemCache in place of
CacheClass.

 nav.xhtml

 Table of Contents

 		
 Cache Machine

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

